Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Rangel, Thiago F (Ed.)Species distribution models (SDMs) are frequently data-limited. In aquatic habitats, emerging environmental DNA (eDNA) sampling methods can be quicker and more cost-efficient than traditional count and capture surveys, but their utility for fitting SDMs is complicated by dilution, transport, and loss processes that modulate DNA concentrations and mix eDNA from different locations. Past models for estimating organism densities from measured species-specific eDNA concentrations have accounted for how these processes affect expected concentrations. We built off this previous work to construct a linear hierarchical model that also accounts for how they give rise to spatially correlated concentration errors. We applied our model to 60 simulated stream networks and three types of species niches in order to answer two questions: 1) what is the D-optimal sampling design, i.e. where should eDNA samples be positioned to most precisely estimate species–environment relationships? and 2) How does parameter estimation accuracy depend on the stream network’s topological and hydrologic properties? We found that correcting for eDNA dynamics was necessary to obtain consistent parameter estimates, and that relative to a heuristic benchmark design, optimizing sampling locations improved design efficiency by an average of 41.5%. Samples in the D-optimal design tended to be positioned near downstream ends of stream reaches high in the watershed, where eDNA concentration was high and mostly from homogeneous source areas, and they collectively spanned the full ranges of covariates. When measurement error was large, it was often optimal to collect replicate samples from high-information reaches. eDNA-based estimates of species–environment regression parameters were most precise in stream networks that had many reaches, large geographic size, slow flows, and/or high eDNA loss rates. Our study demonstrates the importance and viability of accounting for eDNA dilution, transport, and loss in order to optimize sampling designs and improve the accuracy of eDNA-based species distribution models.more » « lessFree, publicly-accessible full text available February 28, 2026
- 
            Taylor, Caz M (Ed.)Abstract: One strand of modern coexistence theory (MCT) partitions invader growth rates (IGR) to quantify how different mechanisms contribute to species coexistence, highlighting fluctuation‐dependent mechanisms. A general conclusion from the classical analytic MCT theory is that coexistence mechanisms relying on temporal variation (such as the temporal storage effect) are generally less effective at promoting coexistence than mechanisms relying on spatial or spatiotemporal variation (primarily growth‐density covariance). However, the analytic theory assumes continuous population density, and IGRs are calculated for infinitesimally rare invaders that have infinite time to find their preferred habitat and regrow, without ever experiencing intraspecific competition. Here we ask if the disparity between spatial and temporal mechanisms persists when individuals are, instead, discrete and occupy finite amounts of space. We present a simulation‐based approach to quantifying IGRs in this situation, building on our previous approach for spatially non‐varying habitats. As expected, we found that spatial mechanisms are weakened; unexpectedly, the contribution to IGR from growth‐density covariance could even become negative, opposing coexistence. We also found shifts in which demographic parameters had the largest effect on the strength of spatial coexistence mechanisms. Our substantive conclusions are statements about one model, across parameter ranges that we subjectively considered realistic. Using the methods developed here, effects of individual discreteness should be explored theoretically across a broader range of conditions, and in models parameterized from empirical data on real communities.more » « lessFree, publicly-accessible full text available November 1, 2025
- 
            Kisdi, Éva; Akçay, Erol (Ed.)In many species, a few individuals produce most of the next generation. How much of this reproductive skew is driven by variation among individuals in fixed traits, how much by external factors, and how much by random chance? And what does it take to have truly exceptional lifetime reproductive output (LRO)? In the past, we and others have partitioned the variance of LRO as a proxy for reproductive skew. Here we explain how to partition LRO skewness itself into contributions from fixed trait variation, four forms of “demographic luck” (birth state, fecundity luck, survival trajectory luck, and growth trajectory luck), and two kinds of “environmental luck” (birth environment and environment trajectory). Each of these is further partitioned into contributions at different ages.We also determine what we can infer about individuals with exceptional LRO. We find that reproductive skew is largely driven by random variation in lifespan, and exceptional LRO generally results from exceptional lifespan. Other kinds of luck frequently bring skewness down rather than increasing it. In populations where fecundity varies greatly with environmental conditions, getting a good year at the right time can be an alternate route to exceptional LRO, so that LRO is less predictive of lifespan.more » « less
- 
            Heino, Mikko (Ed.)Abstract: Chance pervades life. In turn, life histories are described by probabilities (e.g. survival and breeding) and averages across individuals (e.g. mean growth rate and age at maturity). In this study, we explored patterns of luck in lifetime outcomes by analysing structured population models for a wide array of plant and animal species. We calculated four response variables: variance and skewness in both lifespan and lifetime reproductive output (LRO), and partitioned them into contributions from different forms of luck. We examined relationships among response variables and a variety of life history traits. We found that variance in lifespan and variance in LRO were positively correlated across taxa, but that variance and skewness were negatively correlated for both lifespan and LRO. The most important life history trait was longevity, which shaped variance and skew in LRO through its effects on variance in lifespan. We found that luck in survival, growth, and fecundity all contributed to variance in LRO, but skew in LRO was overwhelmingly due to survival luck. Rapidly growing populations have larger variances in LRO and lifespan than shrinking populations. Our results indicate that luck‐induced genetic drift may be most severe in recovering populations of species with long mature lifespan and high iteroparity.more » « less
- 
            Studies of eco‐evolutionary dynamics have integrated evolution with ecological processes at multiple scales (populations, communities and ecosystems) and with multiple interspecific interactions (antagonistic, mutualistic and competitive). However, evolution has often been conceptualised as a simple process: short‐term directional adaptation that increases population growth. Here we argue that diverse other evolutionary processes, well studied in population genetics and evolutionary ecology, should also be considered to explore the full spectrum of feedback between ecological and evolutionary processes. Relevant but underappreciated processes include (1) drift and mutation, (2) disruptive selection causing lineage diversification or speciation reversal and (3) evolution driven by relative fitness differences that may decrease population growth. Because eco‐evolutionary dynamics have often been studied by population and community ecologists, it will be important to incorporate a variety of concepts in population genetics and evolutionary ecology to better understand and predict eco‐evolutionary dynamics in nature.more » « less
- 
            Abstract Matrix population models are frequently built and used by ecologists to analyse demography and elucidate the processes driving population growth or decline. Life Table Response Experiments (LTREs) are comparative analyses that decompose the realized difference or variance in population growth rate () into contributions from the differences or variances in the vital rates (i.e. the matrix elements). Since their introduction, LTREs have been based on approximations and have not included biologically relevant interaction terms.We used the functional analysis of variance framework to derive an exact LTRE method, which calculates the exact response of to the difference or variance in a given vital rate, for all interactions among vital rates—including higher‐order interactions neglected by the classical methods. We used the publicly available COMADRE and COMPADRE databases to perform a meta‐analysis comparing the results of exact and classical LTRE methods. We analysed 186 and 1487 LTREs for animal and plant matrix population models, respectively.We found that the classical methods often had small errors, but that very high errors were possible. Overall error was related to the difference or variance in the matrices being analysed, consistent with the Taylor series basis of the classical method. Neglected interaction terms accounted for most of the errors in fixed design LTRE, highlighting the importance of two‐way interaction terms. For random design LTRE, errors in the contribution terms present in both classical and exact methods were comparable to errors due to neglected interaction terms. In most examples we analysed, evaluating exact contributions up to three‐way interaction terms was sufficient for interpreting 90% or more of the difference or variance in .Relative error, previously used to evaluate the accuracy of classical LTREs, is not a reliable metric of how closely the classical and exact methods agree. Error compensation between estimated contribution terms and neglected contribution terms can lead to low relative error despite faulty biological interpretation. Trade‐offs or negative covariances among matrix elements can lead to high relative error despite accurate biological interpretation. Exact LTRE provides reliable and accurate biological interpretation, and the R packageexactLTREmakes the exact method accessible to ecologists.more » « less
- 
            Optimal dynamic spatial closures can improve fishery yield and reduce fishing-induced habitat damageBottom-towed fishing gears produce significant amounts of seafood globally but can result in seafloor habitat damage. Spatial closures provide an important option for mitigating benthic impacts, but their performance as a fisheries management policy depends on numerous factors, including how fish respond to habitat quality changes. Spatial fisheries management has largely focused on marine protected areas with static locations, overlooking dynamic spatial closures that change through time. To investigate the performance of dynamic closures, we develop a spatial fishery model with fishing-induced habitat damage, where habitat quality can affect both fish productivity and movement. We find that dynamic spatial closures often achieve greater harvest and habitat protection than fixed marine protected areas or conventional nonspatial maximum sustainable yield management, especially under strong habitat–stock interactions. Determining optimal dynamic spatial closures may require considerable information, but we find that simple policies of fixed-schedule rotating closures also perform well. Dynamic spatial closures have received less attention as fisheries management tools, and our results demonstrate their potential value for addressing both harvest and habitat impacts from fishing.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
